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2K 21/8(kk)-1/6 )r

where (p is a prime) and w = 6 ifp = 3, w =2 ifp> 3;. a runs through the

P -21 quadratic residues of p that lie between 0 and p, while A runs through
2

the remaining P2 numbers between 0 and p.

Specializing again to the case p = 7 we obtain in the usual notation for
hypergeometric series:

2r('/7)r(2/7)Pr(4/7) ~(1/2
F(1/4, 1/4, 1; 1/64) = 47 r(3/7)r(6/7)r(6/7)J

5. Let Gd(s) denote the analytical continuation of the function defined
for a > 3/2 by the series

E/(X2 + y2 + dz2)S-

From a formula similar to (4) it is deduced that
THEOREM: There exists a real number Od such that

Gd(Od) =0 [d > do]
where Od 0 as d - o, but Od 0 0.
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1. Introduction.-In the course of several important researches in
elementary number thepry A. Selberg1 proved some months ago the
following asymptotic formula:

E (log p)2 + Elogplogq = 2xlogx + 0(x), (1)
p 'x pg x

where p and q run over the primes. This is of course an immediate conse-
quence of the prime number theorem, The point is that Selberg's in-
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genious proof of (1) is completely elementary. Thus (1) can be used as
a starting point for elementary proofs of various theorems in analytical
number theory, which previously seemed inaccessible by elementary
methods.

Using (1) I proved that Pn+i/P- 1 as n -* c. In fact, I proved the
following slightly stronger result: To every c there exists a positive b(c),
so that for x sufficiently large we have

7r[x(l + c)] - r(x) > 6(c)x/log x (2)

where 7r(x) is the number at primes not exceeding x.
I communicated this proof of (2) to Selberg, who, two days later, using

(1), (2) and the ideas of the proof of (2), deduced the prime number theorem

lim 'r(x)logx - 1 or, equivalently2
x co x

lim 4(X) - 1, where #(x) = E log p. (3)
z-c X p s x

In a few more days, Selberg simplified my proof of (2), and later we jointly
simplified the proof of the prime number theorem. The new proof no
longer required (2), but used the same ideas as in the proof of (2) and (3).
I was also able to prove the prime number theorem for arithmetic pro-
gressions. My proof of the latter was helped by discussions with Selberg
and it utilizes ideas of Selberg's previous elementary proof of Dirichlet's
theorem,3 according to which every arithmetic progression whose first
term and difference are relatively prime contains infinitely many primes.
This proof will be given in a separate paper.

Selberg has now a more direct proof of (3), which is not yet published.
It is possible, therefore, that the present method may prove to be only of
historical interest.

I now proceed to give the proofs as they occurred in chronological order.
(It should be remarked that we never utilize the full strength of (1), indeed
an error term o(x log x) is all that is used in the following proofs.)
We introduce the following notation:

= t~~(X) ()
A = lim sup , a = lim inf

x _+co x x X0 x

First, we state a few elementary facts about primes which will be used
subsequently. Of these, I, II and IV are well known in elementary prime
number theory, while III is shown to be a simple consequence of (1).

I. a > O.

IL ,lgp - [1 + o(1)]logx,
Pz p
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III. Let x2> xi. Then
#(x2) - (xi) < 2(X2 - xI) + o(x2).

Thus, in particular, if xl = 0, we obtain A . 2.
Put in (1) x = x2 and x = xi and subtraet. Then we obtain

E (log p)2 .5 2X2 log x2 - 2x, log xi + o(x2 log x2) <
X1 <P 5 X2

2(x2 - x1)log x2 + o(x2 log x2). (4)

We distinguish two cases: (A) xi _ x2/(log x2)2. Then clearly log xi =
(1 + o(l))log x2 and III follows from (4) on dividing both sides by log x2.
(B) xi < x2/(log x2)2. Then we have by (A)

#(x2)-#(xl) < #(x2)- 4(x2/(log x2)2) + X2 log x2 <t~~~(Xj) < ~~~~~(log X2)2 lgX

2 )2)+ o(x2) = 2(x2 -X1) + o(X2), q. e. d.

IV. A _ 1.5. This is a consequence of the known result #(x) _ 1.5x.
2. Proof of (2).-It is equivalent to prove that to every positive c there

exists a positive 5(c) such that 4[(1 + c)x] - 6(x)> 5(c)x for x sufficiently
large.

Suppose this not true, then there exist positive constants c' and corre-
sponding arbitrarily large x so that

6[x(l + c')] -#(x) = o(x). (5)

Put C = sup c'. It easily follows from I and the finiteness of A that
C< O0.

First we show that C satisfies (5), in other words, that there are arbi-
trarily large values of x for which

t$[x(1 + C)] -# (x) = o(x). (6)
Choose c' >. C - 1/2e and let x -a ) through values satisfying (5).

Then by III we have

W[x(1 + C)] - (x) = 4[x(l + C)] - 6[x(l + c')] + 6[x(l + c')] -
6(x) < 2(C - c')x + o(x) < ex + o(x),

which (since e can be chosen arbitrarily small) proves (6).
Now we shall show that (6) leads to a contradiction. From (1) we

obtain by subtraction

E (log p)2 + E log p log q = 2Cx log x + o(x log x).
x < p . x (1 + C) x < p q : x(l + C)

From (6) we have for suitable x since E (log p)2 = o(X log x)
x<p 5 x(l+ C)
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logp -[(I + C)]-()) 2Cx logx + o(x log x) (7)
p:.x0+X) p

Now we deduce the following fundamental lemma.
LEMMA 1. Let x -- co through values satisfying (6), then for all primes

p 9 x(1 + C), except possibly for a set of primes for which

log P = o(log x) (8)
p

we have

4 X(1 + C)] - = 2C- +o(_). (9)

Suppose the lemma is not true. Then there exist two positive constants
bi and b2 so that for arbitrarily large x (satisfying (6)) we have for a set of

primes satisfying E log r b1 log x
p s x(1 + c) r

{ (I + C)]-x < (2C -b). (10)

But then from II, III and (10), since (9) holds at best for a set of primes

satisfying E (1 - b1) log x we have
r

E log p(19[x(l + C)]- (x) 5 bl(2C-b2)x log x +
PS x(l+ C) r

2C(1 - bl)x log x + o(x log x) = (2C - b1b2)x log x + o(x log x)

But this contradicts (7), hence the lemma is established.
The primes satisfying (9) we shall call good primes, the other primes

we shall call bad primes (of course the goodness and badness of a prime
depends on x).
We shall prove the existence of a sequence of good primes pi < P2 < ... pk

satisfying the following conditions:

< pk < 100PI, (1 + C)(1 + t)2p > P+1 >
(1 +t)pjp i =l,2,..k -1 (11)

where t is a small but fixed number (small compared to C). Since
(1 + t)k < 100 it is clear that k < k0 with constant k, = ko(t).
Suppose we already established the existence of a sequence satisfying

(11). Then we prove (2) as follows: Consider the two intervals
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[-,-(1 + C) ] [-(1 + C) ] (12)
Pt+1 Pi+1 Pi' Pi

If they overlap, then by (11)

_(+ )< x< (1 +C)
Pt+1 Pi Pi+-

Clearly

8-4 (-) = 2 (---) + ° (13)

since otherwise

-(x)_(x < (2 - ci) x-
--pi Pi Pt Pi+}

with ci> 0 and we would have from (9)

[{x (1 + C)]-{ ) > (2 + c2)[x(l + C)

which contradicts III. Adding (13) and (9) with p = pi we obtain

{[x (1 + C)] x = 2 [x (1 + C)] - x + o (_) (14)

If the intervals (12) do not overlap we obtain by a simple calculation
(using (9) and the fact that t is small)

#[_-(_+ C)] - > 1.9 (15)

Adding all the equations (14) and (15) (for i = 1, 2, ..., k) we clearly
obtain

[-(1 + C)] - # (p-) > 1.9 [- (1 + C) - -] (16)

Since Pk> lOpi we obtain from (16)

(1 + C)]> 1.6X- (1 + C). (17)

But (17) contradicts IV.
Thus to complete the proof of (2) it will suffice to show the existence of a

sequence of good primes satisfying (11).
Consider the intervals
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[logx 1Ir = (B2' B2T+1), r = 0 1 ... log B] 1

where B is a fixed, sufficiently large number. Clearly all the intervals
IT lie in the interval (0, x). First we show that with the exception of o
(log x) r's the interval I, contains good primes. From I and IV it easily
follows that for sufficiently large B we have (since t(Bx) - #(x) > cx)

E>logP c(cl > 0 independent of r)
p in 1. p

Thus if there were c2 log x with c2 > 0 of the Ir's without good primes, we
would have

log P > clc2 log x
p bad p

which contradicts (8).
Let now pi(r) be the smallest good prime in I3 (if it exists), and suppose

that a sequence pi(r), p2(T), ..., pi(r) satisfying (11) exists, but no pi+,(
satisfying (11) can be found. Thus, all the primes in

i(r)= [pP(r) (1 + t), pi°r(l + t)2(1 + C)]

are bad. We have, by the definition of C,

E log p > np,(r)(1 + t)2(1 + C), (i absolute constant).
p inJ(r)

Thus
E log p > P (18)

p in J) P

Clearly for B > 100 we have p,(r)(1 + t)2(1 + C) < B27+2. Thus the
intervals J,[', J,r2, ... do not overlap. Hence from (18), since the

number of r's with pi(r) existing is> logx
4 log B

log p > v log x
P bad p 4 log B

which contradicts (8) and establishes (2).
3. Selberg's deduction of the prime number theorem from (2).-Assume

a < A. First we prove the following lemmas.
LEMMA 2. a = 2.
Choose x -X o so that 4(x) = Ax + o(x). Then a simple computation

(as in the proof of III) shows that

E (log p)2 = Ax log x + o(x log x).
P !s x
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Thus from (1)

, (log p) = (2 - A)x log x + o(x log x). (19)

By the definition of a and by II we obtain by a simple computation

(log p)6 >) ax E log P + o(x log x) = ax log x + o(x log x)p 5 x r p x p

Thus from (19), 2 > a + A. We obtain a + A < 2 similarly, by choos-
ing x so that #(x) = ax + o(x). Thus lemma 2 is proved.

LEMMA 3. Let x -* co so that #(x) = Ax + o(x). Then for any prime
pi < x except possible for a set of primes satisfying

log P = o(log x) (20)
p

we have

aX-a +o( (21)

Suppose the lemma is false. Then as in the proof of lemma 1 there
exist two positive constants b1 and b2 so that for arbitrarily large x, satisfy-

ing #(x) = Ax + o(x), and for a set of primes satisfying E log P> b1 log x,
p

we have

p > (a + b2) X (22)

But then we have from (22), lemma 2, (19) and II (as in the proof of
lemma 1)

ax log x +o(x logx) = (log P)t(X) > bi(a + b2)xlog x+ (1- bi)ax

log x + o(x log x) = ax log x + b1b2x log x + o(x log x),

an evident contradiction. This proves lemma 3.
LEMMA 4. Let pi be the smallest prime satisfying (21). Then pi < xe,

and for all primes pj < x/pi except possible for a set of primes satisfying

log P = o(log x) (23)
p

we have
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AVA THEMA TICS: P. ERDOS

-(x) = Ax+o( j) (24)
plpJ plpj 1lp

pi < xf follows immediately from (20) and II. The second part of lemma
4 follows by applying the argument of lemma 3 to x/pl instead of x and
tnterchanging A and a.
Now the deduction of the prime number theorem. Let pi be any prime

satisfying (21). Assume -±< -. Then (since #(x) is non-decreasing)
pipj Pi

from (21) and (24)

a-+ o )<A x +o( )
pi \pf plpJ PiPJ

or p, cannot lie in the interval

P tPi (A
pi1p a

where 5 > 0 is an arbitrary fixed number. Hence all primes in If must
be "bad," i.e., they do not satisfy (24). But it immediately follows from
(2) that

E logP
pinI, p

To obtain a contradiction to (23) it suffices to construct c log x disjoint
intervals Ii. This can be accomplished in the same way as in the end of the
proof of (2) (where the disjoint intervals Ji(r) were constructed). This
completes the first elementary proof of the prime number theorem.

4. Sketch of Selberg's simplification of the proof of (2).-If we can find
two good primes satisfying

(1 + C)p1> P2 > (1 + t)pl, c > C (25)

then (2) follows easily. The intervals [-,-(1 + c)l[[ x(1 + c)],
LPi Pi LP2 P2 J

overlap. Thus (13), with i = 1, holds. But then exactly as in lemma 1
there exists a prime p so that

[X (+C)] ( )
pip p2p p2p

But this is impossible (by the definition of C) since

x (1+ c)/± - 2(1 +c)> 1 + C.
pip p2P Pi
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Thus we only have to show that good primes satisfying (24) exist, and this

can be accomplished by using III (a contradiction with E log p =
p good p

[1 + o(l)]log x can be established similarly as in the previous proof).
5. The joint simplified proof of the prime number theorem.
LEMMA 5. Let x2> xi and x1 co. Assume that #(xi) = Ax, + o(x1)

and (X2) = ax2 + O(X2), or {(xi) = ax, + o(xi) and (x2) = AX2 + O(X2).
Then

x2/xl_ A/a + o(1).

Since #(x) is non-decreasing we have in the first case

aX2 +o(x2) . Ax1 + o(xi) or x2/xl< A/a + o(1)

In the second case we have by III #(X2) - (xi) _ 2(X2 - XI) + O(X2)

ax, + 2(X2- x1) _ AX2 + O(X2) or (2 - A)X2 < (2 - a)x + O(X2).

Hence by lemma 2, ax2 _ Ax1 + o(x2). Thus again X2/X1. A/a + o(1).
q.e.d.

Put 1 + D = - + a where a is sufficiently small, and will be determined
a

later. Next we prove the following result.
LEMMA 6.

log P > q(tq independent of y).
y S p ! (1 + D)y p

First we show that

log p > q(1 + D)y. (26)
yP . (1+ D)y

If (26) is false then for a suitable sequence of y's we have 6[(1 + D)y] -

@(y) = o(y). But then for these y's

6[(1 + D)y] (y) + o(y) < Ay + o(Y) < a - cl
(1 + D)y (1 + D)y = (1 + D)y

which contradicts the definition of a. Thus (26) holds and lemma 6 follows
immediately.

Choose now x so that #(x) = Ax + p(x). Then by lemmas 3 and 4
we obtain (pi, pi and p1 having the same meaning as in lemmas 3 and 4)

#( x ) = A +o(_), # (-) = ax-+o (_)
plpj pp lpjI Pi isP

From lemma 5 we obtain that for any fixed e and sufficiently large x (satis-
fying # (x) = Ax + o(x))
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either x > ( _ ) x or x < A + x
Pt a plpj P A PIP,

Hence pj cannot lie in the interval

p)P a )Pi1

Now if 5 is small enough then 1 + D < e--E)/Q + e). Hence by

lemma 6

logp >
p in

71
Pinli p

But by what has been said before all the primes in It are bad (i.e., they do
not satisfy (24)). Thus to arrive at a contradiction with (23) it will
suffice as in the proof of (2) to construct c log x disjoint intervals It. This
can be accomplished as in the proof of (2), which completes the proof of the
prime number theorem.

6. Perhaps this last step can be carried out slightly more easily as
follows: Put

S logPi E logp (27)
Pi p in 1; p

where pi runs through t,he primes satisfying (21). As stated before all
the primes in It are bad (i.e., they do not satisfy (24)). Thus we have
from (27)

S> vE logP2> - log x (28)
Pi 2

since by II and (20) z log > l/2 log x for large x.
Pi

On the other hand by interchanging the order of summation we obtain

s logPp log PiS = E -P E g
p p in Jp Pi

where p runs through all the primes of all the intervals It (each p is, of
course, counted only once) and pi runs through the primes satisfying (21)
of the interval

= PPi(A > PPa)Q+
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We evidently have from A < o

Z logp{<
pi in Jp pi

Hence

> S/c
p

or from (27)

logP X log x,
p 2c

which contradicts (22) and completes the proof.
1 Selberg's proof of (1) is not yet published.
2 See, for example, Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen,

§ 19, or Ingham, A. E., The Distribution of Prime Numbers, p. 13.
3An analogous result is used in Selberg's proof of Dirichlet's theorem.
4See, for example, Landau, E., op. cit., §§18 and 26, or Ingham, A. E., op. cit., pp.

14, 15 and 22.
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1. Introduction-Locally compact groups have attracted a great deal
of study in the years since the introduction of invariant integration by
Haar.' It has been shown that their structure is closely related to that
of Lie groups in certain important cases (compact,2 abelian3 and solvable4
groups), and it is widely conjectured that similar results are valid in general.
We shall state here certain theorems which strengthen this conjecture
and reduce its verification to the study of simple groups.

2. The Extension Theorem for Lie Groups.-THEOREM 1. Let G be
a topological group. Suppose that G has a closed normal subgroup N such
that both N and GIN are Lie groups. Then G is itself a Lie group.

In case N is abelian, Kuranishi5 has proved this theorem under the
additional hypothesis that there is a local cross-section for the cosets of
N; that is, a closed set having exactly one point in common with each
coset of N near the identity. The author has shown6 that such a cross-
section set always exists for abelian Lie groups. Hence our theorem is
true for the special case that N is abelian.
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